Edexcel Maths C1 Topic Questions from Papers Simultaneous Equations **(6)** Leave blank | 5. | Solve | the | simultaneous | equations | |-----------|-------|-----|--------------|-----------| |-----------|-------|-----|--------------|-----------| $$x-2y=1,$$ $$x^2 + y^2 = 29.$$ | y = x - 2, | | |----------------------------------|-----| | y = x - 2,
$y^2 + x^2 = 10$. | | | y 1 x = 10. | (7) | 6. | (a) | Bv | elimir | nating | ν | from | the | equatio | ns | |-----------|-----|----|---------|---------|---|--------|-----|----------|-----| | • | (4) | | CIIIIII | 1441115 | , | 110111 | uic | equation | 110 | $$y = x - 4$$, $$2x^2 - xy = 8,$$ show that $$x^2 + 4x - 8 = 0.$$ **(2)** (b) Hence, or otherwise, solve the simultaneous equations $$y = x - 4$$, $$2x^2 - xy = 8,$$ giving your answers in the form $a \pm b\sqrt{3}$, where a and b are integers. **(5)** - **6.** The curve C has equation $y = \frac{3}{x}$ and the line l has equation y = 2x + 5. - (a) On the axes below, sketch the graphs of C and l, indicating clearly the coordinates of any intersections with the axes. **(3)** (b) Find the coordinates of the points of intersection of C and l. **(6)** | estion 6 continued | | |--------------------|--| y - 3x + 2 = 0 | | |----------------------|-----| | $y^2 - x - 6x^2 = 0$ | (7) | | | (7) | 10. (a) On the axes below sketch the graphs of (i) $$y = x(4-x)$$ (ii) $$y = x^2(7-x)$$ showing clearly the coordinates of the points where the curves cross the coordinate axes. **(5)** (b) Show that the x-coordinates of the points of intersection of $$y = x(4-x)$$ and $y = x^2(7-x)$ are given by the solutions to the equation $x(x^2 - 8x + 4) = 0$ (3) The point A lies on both of the curves and the x and y coordinates of A are both positive. (c) Find the exact coordinates of A, leaving your answer in the form $(p+q\sqrt{3}, r+s\sqrt{3})$, where p, q, r and s are integers. **(7)** | x + y = 2 | | |-------------------|-----| | $4y^2 - x^2 = 11$ | | | 4y - x = 11 | (7) | **6.** Figure 1 Figure 1 shows a sketch of the curve with equation $y = \frac{2}{x}$, $x \neq 0$ The curve C has equation $y = \frac{2}{x} - 5$, $x \ne 0$, and the line l has equation y = 4x + 2 (a) Sketch and clearly label the graphs of C and l on a single diagram. On your diagram, show clearly the coordinates of the points where C and l cross the coordinate axes. **(5)** (b) Write down the equations of the asymptotes of the curve C. **(2)** (c) Find the coordinates of the points of intersection of $y = \frac{2}{x} - 5$ and y = 4x + 2 (5) | | blank | |----------------------|-------| | Question 6 continued | 11. Figure 2 The line y = x + 2 meets the curve $x^2 + 4y^2 - 2x = 35$ at the points A and B as shown in Figure 2. (a) Find the coordinates of A and the coordinates of B. **(6)** (b) Find the distance AB in the form $r\sqrt{2}$ where r is a rational number. | (3 | 1 | |----|---| | (2 | " | | | Leave
blank | |---------------------------|----------------| | Question 11 continued | Q11 | | (Total 9 marks) | | | TOTAL FOR PAPER: 75 MARKS | | | END | | 10. Given the simultaneous equations $$2x + y = 1$$ $$x^2 - 4ky + 5k = 0$$ where k is a non zero constant, (a) show that $$x^2 + 8kx + k = 0$$ **(2)** Given that $x^2 + 8kx + k = 0$ has equal roots, (b) find the value of k. **(3)** (c) For this value of k, find the solution of the simultaneous equations. **(3)** | estion 10 continued | | |---------------------|--| ## **Core Mathematics C1** ## Mensuration Surface area of sphere = $4\pi r^2$ Area of curved surface of cone = $\pi r \times \text{slant height}$ ## Arithmetic series $$u_n = a + (n-1)d$$ $$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n[2a+(n-1)d]$$