Edexcel Maths C1

Topic Questions from Papers

Simultaneous Equations

(6)

Leave blank

5.	Solve	the	simultaneous	equations
-----------	-------	-----	--------------	-----------

$$x-2y=1,$$

$$x^2 + y^2 = 29.$$

y = x - 2,	
y = x - 2, $y^2 + x^2 = 10$.	
y 1 x = 10.	(7)

6.	(a)	Bv	elimir	nating	ν	from	the	equatio	ns
•	(4)		CIIIIII	1441115	,	110111	uic	equation	110

$$y = x - 4$$
,

$$2x^2 - xy = 8,$$

show that

$$x^2 + 4x - 8 = 0.$$

(2)

(b) Hence, or otherwise, solve the simultaneous equations

$$y = x - 4$$
,

$$2x^2 - xy = 8,$$

giving your answers in the form $a \pm b\sqrt{3}$, where a and b are integers.

(5)

- **6.** The curve C has equation $y = \frac{3}{x}$ and the line l has equation y = 2x + 5.
 - (a) On the axes below, sketch the graphs of C and l, indicating clearly the coordinates of any intersections with the axes.

(3)

(b) Find the coordinates of the points of intersection of C and l.

(6)

estion 6 continued	

y - 3x + 2 = 0	
$y^2 - x - 6x^2 = 0$	(7)
	(7)

10. (a) On the axes below sketch the graphs of

(i)
$$y = x(4-x)$$

(ii)
$$y = x^2(7-x)$$

showing clearly the coordinates of the points where the curves cross the coordinate axes.

(5)

(b) Show that the x-coordinates of the points of intersection of

$$y = x(4-x)$$
 and $y = x^2(7-x)$

are given by the solutions to the equation $x(x^2 - 8x + 4) = 0$

(3)

The point A lies on both of the curves and the x and y coordinates of A are both positive.

(c) Find the exact coordinates of A, leaving your answer in the form $(p+q\sqrt{3}, r+s\sqrt{3})$, where p, q, r and s are integers.

(7)

x + y = 2	
$4y^2 - x^2 = 11$	
4y - x = 11	(7)

6.

Figure 1

Figure 1 shows a sketch of the curve with equation $y = \frac{2}{x}$, $x \neq 0$

The curve C has equation $y = \frac{2}{x} - 5$, $x \ne 0$, and the line l has equation y = 4x + 2

(a) Sketch and clearly label the graphs of C and l on a single diagram.

On your diagram, show clearly the coordinates of the points where C and l cross the coordinate axes.

(5)

(b) Write down the equations of the asymptotes of the curve C.

(2)

(c) Find the coordinates of the points of intersection of $y = \frac{2}{x} - 5$ and y = 4x + 2 (5)

	blank
Question 6 continued	

11.

Figure 2

The line y = x + 2 meets the curve $x^2 + 4y^2 - 2x = 35$ at the points A and B as shown in Figure 2.

(a) Find the coordinates of A and the coordinates of B.

(6)

(b) Find the distance AB in the form $r\sqrt{2}$ where r is a rational number.

(3	1
(2	"

	Leave blank
Question 11 continued	
	Q11
(Total 9 marks)	
TOTAL FOR PAPER: 75 MARKS	
END	

10. Given the simultaneous equations

$$2x + y = 1$$
$$x^2 - 4ky + 5k = 0$$

where k is a non zero constant,

(a) show that

$$x^2 + 8kx + k = 0$$

(2)

Given that $x^2 + 8kx + k = 0$ has equal roots,

(b) find the value of k.

(3)

(c) For this value of k, find the solution of the simultaneous equations.

(3)

estion 10 continued	

Core Mathematics C1

Mensuration

Surface area of sphere = $4\pi r^2$

Area of curved surface of cone = $\pi r \times \text{slant height}$

Arithmetic series

$$u_n = a + (n-1)d$$

$$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n[2a+(n-1)d]$$